

Y POLITECNICO DI MILANO

How century-old catalytic chemistry can alleviate today's problems: food, energy, pollution, mobility

Enrico Tronconi

Istituto "Alessandro Greppi" Monticello Brianza (LC) April 20th, 2018

Permanent staff

Pio Forzatti (full professor) Enrico Tronconi (full professor) Luca Lietti (full professor) Gianpiero Groppi (full professor) Alessandra Beretta (full professor) Isabella Nova (associate professor) Lidia Castoldi (associate professor) Matteo Maestri (associate professor) Carlo Giorgio Visconti (associate professor) Alessandro Donazzi (associate professor) Roberto Matarrese (assistant professor)

PhD Students

Mauro Bracconi Leonardo Falbo Morteza Rahmanipour Alessandro Porta Matteo Ambrosetti Federica Gramigni Umberto Ghelli

Camila Monroy Andrea Ravanelli Matteo Molteni Simone Guffanti Roberta Villamaina

Post-Doc Researchers

Nicola Usberti Felice Shaojun Tommaso Selleri Laura Fratalocchi Riccardo Balzarotti Pedram Aghaei

Senior Scientist Natale Ferlazzo

Temporary researchers

~50 undergradsmasters/year

Technicians Roberto Losi Enrico Aliprandi Enrica Ceresoli **Visiting scientists from abroad** 5-10 people/year

- Catalysis the process by which the rate and products of chemical reactions are altered by substances unchanged by the reaction – it is at the core of the chemical and petroleum industries.
- ✓ Catalysis-based processes represent more than 90% of current chemical processes and generate 60% of today's chemical products.
- In addition to traditional roles in the chemical and petroleum industries, catalysts are of growing importance in fields ranging from environmental protection and energy to pharmaceuticals and the processing of high performance materials.

TABLE 1.1 MAJOR CATALYTIC REACTIONS THAT ARE USED INDUSTRIALLY

Inorganic chemicals: Synthesis of NH ₃ on an iron catalyst Synthesis of SO ₃ by oxidation of SO ₂ on a platinum or V_2O_3 catalyst Synthesis of NO through oxidation of NH ₃ on a platinum/rhodium catalyst	
Manufacture of synthesis gas and hydrogen: Steam-reforming of hydrocarbons over nickel catalysts Water-gas shift reaction (CO \div H ₂ O = CO ₂ + H ₂) over catalysts of iron oxide or m of Zn, Cu and Cr	ixed oxides
The enormous group of reactions for refining crude petroleum and manufacturing basic Catalytic cracking to produce gas oils, gasoline, aromatic hydrocarbons, olefins, e Catalytic reforming to make gasoline and aromatics Catalytic isomerization to produce light gasoline and isoparaffins Catalytic hydrocracking to produce gasoline, fuel oil and gas oils Catalytic hydrocracking to produce gasoline, fuel oil and gas oils Catalytic hydrocracking to produce gasoline, fuel oil and gas oils Catalytic hydrocracking to produce gasoline, fuel oil and gas oils Catalytic hydrocracking to produce gasoline, fuel oil and gas oils Catalytic hydrocracking to produce gasoline Hydrodesulfurization, hydrotreating Selective hydrogenation of pyrolysis gasoline Alkylation of benzene with propylene to make cumene and gasoline Oligomerization and polymerization to produce gasoline, detergent olefins and pla Fischer-Tropsch reactions of $CO + H_2$ on cobalt or nickel catalysts to produce hydro and isosynthesis on a catalyst promoted with ThO ₂ or ZnO	chemicals: tc. sticizers irocarbons,
 Petrochemicals: Hydrogenations: Benzene to cyclohexane Nitriles or dinitriles to amines or diamines (e.g., nylon) Phenol to cyclohexanol (adipic acid and nylon) Nitrobenzene to anilne Unsaturated fatty acids to stabilized fatty acids Miscellaneous selective hydrogenations Dehydrogenations: Paraffins to olefins to diolefins (e.g., butane to butene to butadiene) Alcohols to ketones (e.g., isopropyl alcohol to acetone) Hydrations: Ethylene to ethyl alcohol Controlled oxidations: Ethylene to thyl alcohol Controlled oxidations: Ethylene to maleic anhydride over a catalyst of silver or iron molybdenate Ethanol to formaldehyde Benzene to maleic anhydride over a catalyst of V₂O₃, MoO₃ Naphthalene or o-xylene to phthalic anhydride on V₂O₃ Butane to maleic anhydride Oxychlorinations and chlorinations: Ethylene + HCl + O₂ to give dichloroethane Methanol: Synthesis gas to methanol on ZnO, Cr₂O₃, CuO 	
Polymerizations: Ethylene to polyethylene on catalysts of supported Cr_2O_3	
Energy production: Catalysis can be exploited in fuel cells	
Pollution control: Catalytic exhaust treatment Reduction or oxidation of SO_2 and H_3S Cleaning industrial gases with miscellaneous catalysts	
Montarval, R., Le Page, J. F., La catalyse au laboratoire et dans l'industrie. Masson, 1967.	

"The urgent need for fuels in an era of declining resources and of pressing environmental concerns demands a resurgence in catalysis science (*and engineering*)» Report from the U.S. DOE

Report from the U.S. DOE Basic Energy Sciences Workshop, Aug. 2007

- ✓ The Laboratory of Catalysis and Catalytic Processes (LCCP) is a research group at Politecnico di Milano that has pioneered multidisciplinary research in the science and engineering of catalysis.
- ✓ The mission of the LCCP is the education of students via relevant research in the multidisciplinary field of catalysis science, spanning from fundamental research to technical applications, with a strong connection to the industrial world

Laboratory of Catalysis and Catalytic Processes

New LCCP laboratories at Campus Bovisa (B18): July 2014

- ✓ 2000 m²
- Laboratories for catalyst preparation and characterization, for catalytic testing under atmosphere and highpressure

Equipment for catalyst preparation

Powdered catalysts:

Dry impregnation, Wet impregnation, Co-precipitation

Coated items:

Ball-milling, Ultracentrifugation Unit, deep coating, spraying, Rheometer

<u>Bulk monoliths</u>: Mixer, Kneader, Screw-Extruder,

<u>Standard techniques</u>: Climatic Chamber, Filtering Equipments, pH-meters, Drying and Calcination Ovens

Equipment for catalyst characterisation (morphological, structural, bulk and surface physico-chemical) GC-MS, TPD/R/O, FTIR, UV-Vis, XRD, DTA-TG, SEM available inside the group/ Department

In situ FTIR, probe and labelled molecule spectroscopies, HRTEM, XPS through collaboration with research groups with specific expertise outside our University

22 rigs for catalyst testing (powder and structured catalysts, steady state and transient conditions, also operated under pressure)

Facilities @ LCCP

Computational facilities (computing time at supercomputer centers, software for modelling and simulation)

Laboratory of Catalysis and Catalytic Processes

Academic collaborations

Sweden: Chalmers University of Technology France: ✓ KTH Royal Institute of Technology University of Caen **UPMC** (Universitè Poland: AGH-University of Science and Technology Kraków Pierre et Marie Curie) Paris Germany: Fritz-Haber-Institut der MPG, Berlin ✓ TUM, Munich ✓ DLR, Stoccarda ✓ KIT, Karlsruhe Czech Republic: Academy of Sciences, Prague Italy: ✓ CNR Politecnico di Torino USA: Università dell'Aquila Spain: ✓ Lehigh University Università di Bologna ✓ University of Malaga University of California at Berkeley Università di Genova University of Madrid \checkmark University of Delaware \checkmark Università "La Sapienza" di Roma University of Siviglia University of Minnesota Università di Salerno Oak Ridge National Laboratory Università di Torino University of Houston ✓ Università di Udine University of Kentucky (CAER) Università di Cagliari University of Virginia

Industrial collaborations

Energy conversion:

- Catalytic Partial Oxidation of NG/LPG to CO/H₂
- Fischer-Tropsch Synthesis
- Synthesis of DME, Methanol
- CO₂ activation

Advanced reactor design and modelling:

- Novel Structured Catalytic Reactors
- First-principles Guided Chemical Engineering

Electrocatalysis:

- Photo-electrochemical processes: Water Splitting
- Solid Oxide Fuel Cells

Environmental protection:

- Catalytic Combustion of Methane Emissions
- NO_x Storage-Reduction in Vehicles
- Combined Soot Combustion and NO_x Removal
- NH₃-SCR of NO_x for stationary sources
- NH_3 -SCR of NO_x for mobile sources

Chemistry: **Standard SCR** 2 NO + 2 NH₃ + $\frac{1}{2}$ O₂ => 2 N₂ + 3 H₂O

Experimental and simulated evolution of the NO outlet concentration during SCR reactor start-up and shut-down at T = $360 \degree C. C_{NO}^{0} = 560 \text{ ppm}, \text{AV} = 33 \text{ Nm/h}.$

E. Tronconi, A. Cavanna, P. Forzatti, IEC Res. 37 (1998) 2341

Extensively investigated at POLIMI in the '90s

Commercial catalysts: $V_2O_5-WO_3/TiO_2$ extruded honeycombs Operating temperatures: 300 – 400 °C

• Catalytic process for the conversion of natural gas, coal or biomasses into highquality diesel fuels and chemicals

$$CO + 2H_2 \longrightarrow C_nH_{2n+2}$$

$$C_nH_{2n} + H_2O$$

$$C_nH_{2n+1}OH$$

• Main achievements in the last years (in cooperation with Eni)

Development of lumped and detailed kinetic models, now used for the simulation of a pilot-scale demonstrative reactor (Sannazzar de' Burgundi Eni's refinery) and the design of industrial reactor units

POLITECNICO DI MILANO

Main achievements

Development of an innovative compact reactor technology, based on structured catalysts (WO2010/130399 & WO2014/102350) successfully tested at the pilot scale (Eni labs in San Donato)

EMONS⁻

Small scale MT-FBR for FTS

ERC AdG Grant - INTENT

European Research Council

ERC Advanced Grant 2015 Action 694910: INTENT POLITECNICO MILANO 1863

"Structured Reactors with INTensified ENergy Transfer for Breakthrough Catalytic Technologies"

Principal Investigator: Enrico Tronconi Host Institution: Politecnico di Milano Duration: 60 months, started on Nov. 1st, 2016 Budget: 2 484 649 Euro

Natural Gas flaring in Nigeria

GTL = Gas-To-Liquids

Natural Gas conversion to clean fuels via Fischer-Tropsch Synthesis

MMSCF/D = *million* of *million* standard cubic feet per day

Enrico Tronconi

Why natural gas ?

- The maximum energy that is nowadays available from all the alternative energy sources (biomass, nuclear energy, wind energy, hydroelectric energy), would be only a little higher than the request of 2000 Mtep over the next 25 years.
- As the research aims at finding energy sources which are alternative or complementary to crude oil, a new trends is using **other fossil sources**, such as coal and **natural gas**.
- Natural gas is considered a better fossil fuel than coal, as:
 - It is inherently **cleaner** than coal;
 - It can be purified already at the well-head.
- Large natural gas reserves
- How can we exploit natural gas ?

Sabato 31 Marzo, 2012 CORRIERE DELLA SERA Gas naturale al posto del petrolio Come cambierà il futuro del mondo di FAREED ZAKARIA

2005 Proven World Oil & Gas Reserves

Source: Eni's World Oil & Gas Review 2006

5

How NG can be exploited? The «stranded gas» problem

 The main problem with NG is that about the 36% of it is located in remote areas (= Iran, Russia, Qatar) and/or in small fields (most of the times "associated" with oil fields – "flaring" = 15 bcfd), which are situated often off-shore

bcfd = *billion cubic feet per day*

How NG can be exploited? The «stranded gas» problem

Yellow dots= energy consumption Red dots= flaring

Raw material cost:

<1.4 \$/kJ

Product cost: ≈ **9.3** \$/kJ

POLITECNICO DI MILANO

bcfd = *billion cubic feet per day*

Enrico Tronconi

Enrico Tronconi

Enrico Tronconi

- LNG = Liquified Natural Gas → gas is liquefied with a cryogenic process (physical process) @
 - -162°C and transported using LNG tankers

MMSCF/D = million of million standard cubic feet per day $mtpa = million tons per annum 1 SCF = 2.83 \times 10^{-2} SCM$

Enrico Tronconi

• LNG technology cannot be used for the exploitation of small fields of natural gas.

Enrico Tronconi

Enrico Tronconi

Pipeline, LNG, GtL, GtW or GtC ?

GtL is the best option for medium-size reservoirs

Hoek A., Oral Presentation, DGMK Conference "Synthesis Gas Chemistry", Dresden October 4-6, 2006

Gas to Liquid (GtL) process

Gas to Liquid (GtL) process

Gas to Liquid (GtL) process

In summary: what are the advantages of the GtL process?

- It converts **remote gas** fields and "flare" gas to saleable products
- It leads to a strategic diversification of energy resources
- It causes the formation of hydrocarbon products:
 - of high added value:
 - » raw material: 0 1.5 \$/MMBTU
 - » Products: 10 \$/MMBTU
 - environmentally friendly, beacuse sulphur-free and aromatics-free

==> GtL diesel emissions, compared to the emissions of a

conventional diesel:

NO_x -6% PM₁₀ -20% HC -63% CO -71% high performance (diesel

with high cetane number)

Enrico Tronconi

Diesel Diesel "tradizionale" Fischer-Tropsch

The Fischer-Tropsch Synthesis

Franz Fischer at Work in 1918

www.fischer-tropsch.org

Financial Mail, 2000
FTS: the God reaction?

3rd Syngas Convention Cape Town, SA March 2018

FTS is one of the most important catalytic processes for energy and environment.

- Invention of the Bergius process (coal liquefaction, 1913) and FTS (1926)
- Germany's industrialization (1926 1945)

- Transfer of the technology to UK, US, South Africa ... (1945 – 1990)
- New market drivers (2000):
 - need for cleaner fuels;
 - abundance of "stranded" natural gas

- Studies on synthetic fuels (i.e. <u>not from oil</u>) began in early '900.
- Petroleum had become essential to the economy by the 1920s (cars, airplanes, ships required a shift from solid to liquid fuels).
- Germany had no petroleum but huge resources of coal. It was the first of industrialized nations to synthetize petroleum: Friedrich Bergius (1913) patented a process for coal liquefaction to produce a high-quality gasoline.
- (This process was briefly revived in the late '70s due to the oil crises).

Figure 1. Friedrich Bergius

 Invention of the FTS (1926) at the Kaiser Wilhelm Institute of Mülheim (Ruhr valley): C + H₂O ==> CO + H₂
 nCO + 2n H₂ ==> (-CH₂-)_n + n H₂O over Co-Fe catalysts
 German Patent 524,468 (2/11/1926)

Figure 3. Hans Tropsch

- First large plant (1934, Ruhrchemie AG): 1 kton/yr
- By 1937-38: four FTS plants, 300 kton/yr
- By 1939: nine FTS plants, peak = 576 kton/yr (1944)
- Contributed to ~ 15% of total synfuel production, which covered 95% of German Luftwaffe's gasoline and 50% of total liquid fuel consumption of Germany during WWII
- Plants destroyed by Allied bombing (March 1945)

- After WWII: FTS plants, scientists and technicians transferred to USA.
- Technology acquired by USA: summary reported in H.H. Storch, N. Golumbic, <u>R.B. Anderson</u>, «The Fischer-Tropsch and related syntheses», J. Wiley, NY, 1951
- Development discontinued in the early '50s due to very low oil price.

 FTS technology transferred in South Africa in the '50s (oil embargo due to racial segregation).

 In 1950-1980: new large FTS plants erected in Sasolburg (SA) (coal gasification).

Fischer-Tropsch Synthesis: reactions

The stoichiometry of the synthesis can be schematized as

$n CO + 2n H_2 \rightarrow (-CH_2-)_n + n H_2O$ $\Delta H = -40 \text{ kcal/mol CO}$

Actually the chemistry is more complex, possibly involving also the WGS reaction

$CO + H_2O \rightarrow CO_2 + H_2$

and the synthesis of straight chain oxygenates (C_{2+}) ,

 $n CO + 2n H_2 \rightarrow H(-CH_2-)_nOH + (n-1) H_2O$

The choice of catalyst and operating conditions influences the products distribution (n_c , olefins vs. paraffins, oxygenates vs. hydrocarbons....).

Fischer-Tropsch Synthesis: catalysts

- X Iow activity⇒HTFT (250<T<350°C)
- high selectivity for olefines and alcohols
- × promotes WGS reaction
- appropriate for the production of syngas from coal or from biomass

- × expensive
- ✓ high activity⇒LTFT (T<250°C)
- ✓ high selectivity for paraffins
- no WGS reaction
- ⇒ appropriate for the production
- of syngas from natural gas

Fischer-Tropsch Synthesis: reaction products

Spacios	Selectivity [%]			
Species	HTFT	LTFT		
CH4	7	4		
Olefins C ₂ -C ₄	24	4		
Paraffins C ₂ -C ₄	6	4		
Gasoline	36	18 19		
Diesel	12			
Lubricant oils and waxes	9	48		
Oxygenated	6	3		

economic

55 847

- low activity⇒HTFT (250<T<350°C) X
- high selectivity for olefines and alcohols \checkmark high selectivity for paraffins X
- promotes WGS reaction X
- ⇒ appropriate for the production of syngas from coal or from biomass

- × expensive
- ✓ high activity⇒LTFT (T<250°C)
- - v no WGS reaction
 - ⇒ appropriate for the production
 - of syngas from natural gas

Fischer-Tropsch Synthesis: catalysts

Support	SiO_2 , AI_2O_3 , TiO_2 , mix					
materials:	They act actually like structural promoters					
	They are able to start secondary reactions (e.g.: acid sites)					
	Structural: they increase the active phase dispersion (Re, Zr, Ce)					
Promoters:	of Reduction : they increase the active phase reducibility (Ru, Pd, Pt, Cu)					
	of Activity: they prevent coke deposition (noble metals)					
	of Selectivity : they change the product distribution (Na. K. Cs)					

economic

- low activity⇒HTFT (250<T<350°C) X
- high selectivity for olefines and alcohols \checkmark high selectivity for paraffins X
- promotes WGS reaction ×
- ⇒ appropriate for FTS with syngas from coal or biomass

- × expensive
- ✓ high activity⇒LTFT (T<250°C)
- - v no WGS reaction
 - appropriate for FTS with syngas from natural gas

Fischer-Tropsch Synthesis: product distribution

POLITECNICO DI MILANO

x = 0,2

Fischer-Tropsch Synthesis: product distribution

x = 0,2

Fischer-Tropsch Synthesis: product distribution

x =0,2

ASF (Anderson Schulz Flory) distribution

 α = chain growth probability

 $1-\alpha$ = chain termination probability

Anderson-Schulz-Flory Distribution

C.G. Visconti, E. Tronconi, L. Lietti, R. Zennaro, P. Forzatti, "Development of a complete kinetic model for the Fischer-Tropsch Synthesis over Co/Al₂O₃ catalysts", Chem. Eng. Sci., <u>62</u>, 5038-5043 (2007)

Fischer-Tropsch Synthesis: selectivity

High molecular weight linear paraffins

Products distribution

Higher values of the probability factor lead to products with longer carbon chain

The current trend is to work with α between 0.9 and 0.95 in order to obtain higher fractions of diesel and lubricants

FT products distribution as a function of chain growth factor α

Fischer-Tropsch Synthesis: selectivity

Fischer-Tropsch Synthesis: reactors

MTFBR = Multi Tubolar Fixed Bed Reactor

 \rightarrow up to 30'000 tubes (lenght up to 12 m, I.D. 1-2")

→ up to 5'800 bpd per reactor

1) It has been used in the past for the Fe-LTFT from coal:

- in Germany during the second world war
- Sasol I (Arge), Sud Africa, 1950-1985 (700 bpd/reactor)

2) Currently operating, since 1993, Shell Bintulu (Malaysia) Co-LTFT from gas, 3'675 bpd/reactor (tot: 4 reactors)

3) Currently operating, Shell Pearl (Qatar) Co-LTFT from gas, 5'800 bpd/reactor (tot 24 reactors)

DISADVANTAGES:

- a) poor heat dissipation from the reaction zone
 ---for Co-LTFT a liquid phase recycle is requested---
- b) high pressure drop
- c) material diffusion limitations
- d) difficulty in catalyst charge and dischrge operations
- e) Elaborated (trickle-bed) and expensive

Fischer-Tropsch Synthesis: reactors

SBCR = Slurry Bubble Column Reactor

- → height up to 60m, O.D. up to 10m
 - → up to 17'000 bpd/reactor

Currently operating:

- Sasol I, Sud Africa, since 1993
- Qatar Petroleum and Sasol (Oryx), since 2008 17'000 bpd/reactor (2 reactors)

ADVANTAGES:

- a) isothermicity
- b) reduced pressure drop
- c) catalyst can be replaced on-line
- d) more economic than MTFBR

DISADVANTAGES:

- a) catalyst crushing
- b) Backmixing
- c) only for large-scale application

GtL initiatives in the world

Property owner	Project	Location	FT Technology	Capacity (kbpd)	Cost (G\$)	Cost (\$/bpd)	Status
Chevron (75%) NNPC (25%)	Escravos EGTL	Nigeria	SBCR	34	1.7	50	under construction since 2005 expected to end in 2011 commissioning since 2012/13
Qatar Petroleum (70%) Shell (30%)	Pearl GTL	Qatar	MTFBR	70+70	6	43	under contruction since 2005 ended in 2010
Qatar Petroleum ExxonMobil	-	Qatar	SBCR	154	7	45	project announced in 2004 expected to end in 2011 cancelled in 2007
Qatar Petroleum (51%) SasolChevron (49%)	Oryx II Oryx III	Qatar	SBCR	130	4.5	35	expected to end in 2009 commissioning not before 2012
Qatar Petroleum Marathon Oil	-	Qatar	SBCR	120	I		project delayed for three years
Qatar Petroleum ConocoPhillips	-	Qatar	SBCR	80+80	-		expected to end in 2010 commissioning not before 2013

Existing commercial GtL plants

Sasol

reaching new frontiers

Qatar Petroleum

Start up: Location: Capacity (bbl/d): Catalyst: Process: Reactor:

1992 South Africa 22'500 Fe HTFT CFBR

Start up: Location: Capacity (bbl/d): Catalyst: Process: Reactor: 1993 Malaysia 14'500 Co LTFT MTFBR

Start up: Location: Capacity (bbl/d): Catalyst: Process: Reactor:

DRY

2007 Qatar 34'000 Co LTFT SBCR

A close correspondence...

The Shell case

• SMDS = Shell Middle Distillate Synthesis

Shell in Malaysia

Launch of Shell-VW GTL Test : Berlin, 6th May 2003

Synthetic diesel based on SMDS Gasoil - Bintulu

FTS Pearl plant

Aerial view of Shell's Pearl GtL plant, built in Qatar in 2010

Pearl GtL: quantitative data

Shell finished to build Pearl GtL plant in the Qatar desert in 2010, while the full production started in 2012.

It was built to exploit a $2.5 \cdot 10^{14}$ m³ natural gas well in Qatar gulf.

28 Mm³ of natural gas are daily fed to the two trains of the plant, where they are converted into 140'000 barrels of GtL products and 120'000 barrels of LNG and ethane.

The specific area of catalyst contained in all 24 reactors is more than 200 Mm², 18 times the surface of Qatar.

Water system treats 45000 m³ of water per day, the equivalent of a city with 140,000 persons.

Initial investment has been in the order of 19 billion US\$. The only fuel market, assuming an average price for Shell V-Power= $2 \in /L$, grants revenues higher than 33 M \in /d.

Shell in Qatar

Pearl 1 Pearl 2

Gas to Liquid (GtL) process

Isothermal, no intraporous resistances Modular, egg-shell catalyst

Slurry Bubble Column Reactor

Multitubular Fixed Bed Reactor

Compact GtL?

≈6% of the total gas fields in the world

«compact-scale GTL» for associated & remote natural gas reserves

Not modular and not suitable for small-scale, low productivity

Isothermal, no intraporous resistances

Slurry Bubble Column Reactor

Thermally unmanageable on smallscale

Modular, egg-shell catalyst

Multitubular Fixed Bed Reactor

How to manage the heat removal in compact PBR??

The FTS is highly exothermal ($\Delta H_R^0 \cong$

-165 kJ/mol_{co}) <u>an inefficient T-control</u> would lead to:

- Presence of hot-spots
- Strong axial and radial T-gradients

> Worsening of the catalyst selectivity

- Fast catalyst deactivation
- Thermal runaway of the reactor!

Improved Heat Transfer

Conductive Structured Catalysts:

From slow convective mechanism to the fast heat conduction in the solid matrix

Almeida et al. Cat. Today 215(2013)103 Visconti et al. Chem. Eng. J. 171 (2011)1294

How to manage the heat removal in compact PB??

The FTS is highly exothermic $(DH_R^0 \cong -165 \text{ kJ/mol}_{CO})$: <u>a inefficient T-control would lead to</u>:

- Presence of hot-spots
- Strong axial and radial T-gradients

> Worsening of the catalyst selectivity

- Fast catalyst deactivation
- Thermal runaway of the reactor!

Improved Heat Transfer

Conductive Structured Catalysts:

From slow convective mechanism to the fast heat conduction in the solid matrix

Washcoated systems

 \odot

The catalyst inventory is much less than in a packed bed of catalyst pellets

Almeida et al. Cat. Today 215(2013)103 Visconti et al. Chem. Eng. J. 171 (2011)1294

How to manage the heat removal in compact PB??

Development of more appropriate washcoating techniques: the macropores of the foam may be partially occluded

Improved Heat Transfer

Conductive Structured Catalysts:

From slow convective mechanism to the fast heat conduction in the solid matrix

Washcoated systems ☺
The catalyst inventory is much

The catalyst inventory is much less than in a packed bed of catalyst pellets

Almeida et al. Cat. Today 215(2013)103 Visconti et al. Chem. Eng. J. 171 (2011)1294

How to manage the heat removal in compact PB??

Packed-open cell foams

Conductive Structured Catalysts:

From slow convective mechanism to the fast heat conduction in the solid matrix

Patent application WO/2015/033266 Almeida et al. Cat. Today 215(2013)103 Visconti et al. Chem. Eng. J. 171 (2011)1294

Open cell AI-foams packed with cat.pellets for the FTS

40 ppi (ε_{foam}≈ 0.906; d_{cell}≈ 2 mm) provided by ERG

> Packed with Pt-promoted highly active Co-based catalyst $(d_{pellet} = 300 \ \mu m)$ 23wt.%Co/0.1wt.%Pt/Al₂O₃^(s)

> > Comparison of the catalytic performances with the packed bed reactor

European Research Council Established by the European Commission

Experimental:

Packed-foam reactor

Catalyst weight: 7.2 g Cat.Vol.Den.= 0.63 g/cm³

Packed-bed reactor

Cat: α -Al₂O₃ = 1:1.7 w/w Cat.Vol.Den.= 0.29 g/cm³

erc

European Research Council

Established by the European Commission

T-Profiles: Packed-foam vs Packed-bed

POLITECNICO DI MILANO

Cat.Vol.Den.= 0.63 g/cm³

(fixed)
Fischer-Tropsch synthesis: lessons learnt

- ✓ Fischer-Tropsch Synthesis:
 - can help us to exploit efficiently the best available fossil fuel (NG)
 - can help us to make clean Diesel & transportation fuels
 - can help us to reduce gas flaring and related pollution

but also:

- supported Hitler's war efforts during WWII
- supported South Africa's economy during the Apartheid regime

Fischer-Tropsch synthesis: lessons learnt

- ✓ Fischer-Tropsch Synthesis:
 - can help us to exploit efficiently the best available fossil fuel (NG)
 - can help us to make clean Diesel & transportation fuels
 - can help us to reduce gas flaring and related pollution

but also:

 \checkmark

 \checkmark

- supported Hitler's war efforts during WWII
- supported South Africa's economy during the Apartheid regime

Catalysis is crucially important!

FTS: Recommended reading

- H. Schulz, «Short history and present trends of Fischer-Tropsch synthesis», Appl. Catal. A: General 186 (1999) 3
- A.N. Stranges, «A History of the Fischer-Tropsch Synthesis in Germany 1926-45», Studies in Surf. Sci. & Catalysis (B.H: Davis and M.L. Occelli, Ed.s), 2007
- H.H. Storch, N. Golumbic, R.B. Anderson, «The Fischer-Tropsch and related syntheses», J. Wiley, NY, 1951
- F. Zakaria, «Gas naturale al posto del petrolio: Come cambierà il futuro del mondo», Corriere della Sera, 31 marzo 2012
- W. Liss, "A Golden Age of Natural Gas", Chem. Eng.ng Progress, August 2012, p. 35

Another German catalytic process that changed the world

The Alchemy of Air: A Jewish Genius, a Doomed Tycoon, and the Scientific Discovery That Fed the World but Fueled the Rise of Hitler

by Thomas Hager Broadway Books, New York (2009)

$$N_2 + 3 H_2 <==> 2 NH_3$$

«... the story of two men who invented a way to turn air into bread...»

The discovery of the **Haber-Bosch** process for ammonia synthesis (1913) saved the world from starvation, but was used also to make explosives that killed millions of people during WW1.

Thank you for your kind attention!

The School of Athens, Raffaello Sanzio, 1509-1510

POLITECNICO DI MILANO